Improved Efficiency of Silicon Nanoholes/Gold Nanoparticles/Organic Hybrid Solar Cells via Localized Surface Plasmon Resonance.

نویسندگان

  • Ronghua Lu
  • Ling Xu
  • Zhaoyun Ge
  • Rui Li
  • Jun Xu
  • Linwei Yu
  • Kunji Chen
چکیده

UNLABELLED Silicon is the most widely used material for solar cells due to its abundance, non-toxicity, reliability, and mature fabrication process. In this paper, we fabricated silicon nanoholes (SiNHS)/gold nanoparticles (AuNPS)/organic hybrid solar cells and investigated their spectral and opto-electron conversion properties. SiNHS nanocomposite films were fabricated by metal-assisted electroless etching (EE) method. Then, we modified the surface of the nanocomposite films by exposing the samples in the air. After that, polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) ( PEDOT PSS) blended with AuNPS were spin-coated on the surface of the SiNHS nanocomposite films as a hole-transporting layer. The external quantum efficiency (EQE) values of the solar cells with AuNPS are higher than that of the samples without AuNPS in the spectral region of 600-1000 nm, which were essential to achieve high performance photovoltaic cells. The power conversion efficiency (PCE) of the solar cells incorporating AuNPS exhibited an enhancement of 27 %, compared with that of the solar cells without AuNPS. We thought that the improved efficiency were attributed to localized surface plasmon resonance (LSPR) triggered by gold nanoparticles in SiNHS nanocomposite films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles

Silicon nanowire (SiNW) arrays show an excellent light-trapping characteristic and high mobility for carriers. Surface plasmon resonance of silver nanoparticles (AgNPs) can be used to increase light scattering and absorption in solar cells. We fabricated a new kind of SiNW/organic hybrid solar cell by introducing AgNPs. Reflection spectra confirm the improved light scattering of AgNP-decorated ...

متن کامل

Antibody Conjugated Gold Nanoparticles for Detection of Small Amounts of Antigen Based on Surface Plasmon Resonance (SPR) Spectra

In this paper, a fast and sensitive localized surface plasmon resonance (LSPR) based biosensor was developed and the optimization of gold – antibody conjugates through investigation of different parameters were performed. Gold nanoparticles (AuNPs) with a size of ~20 nm were synthesized via chemical reduction of HAuCl4 with trisodium citrate as reducing and stabilizing agent. The impacts of pH ...

متن کامل

Influence of gold-silica nanoparticles on the performance of small-molecule bulk heterojunction solar cells

Light trapping by gold (Au)-silica nanospheres and nanorods embedded in the active layer of small-molecule (SM) organic solar cell has been systematically compared. Nanorod significantly outperforms nanosphere because of more light scattering and higher quality factor for localized surface plasmon resonance (LSPR) triggered by nanorods. The optimum concentration of nanorod was characterized by ...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

Profile Controlled Gold Nanostructures Fabricated by Nanosphere Lithography for Localized Surface Plasmon Resonance

Localized surface plasmon resonance (LSPR) is the coherent oscillation of conductive electrons confined in noble metallic nanoparticles excited by electromagnetic radiation, and nanosphere lithography (NSL) is one of the cost-effective methods to fabricate metal nanostructures for LSPR. NSL can be categorized into two major groups: dispersed NSL and closely pack NSL. In recent years, gold nanoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale research letters

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2016